

SSC8066GN4

N-Channel Enhancement Mode MOSFET

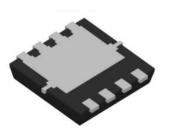
Features

V _{DS}	V_{GS}	R _{DS(ON)}	l _D
60V	+20V	13mΩ@10V	36A
	<u> </u>	19mΩ@4V5	30A

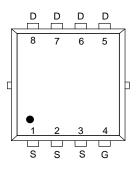
> Description

This SSC8066GN4 uses advanced trench technology to provide excellent RDSON and low gate charge. The complementary MOSFETS may be used to form a level shifted high side switch, and for a host of other applications.

100% UIS + ΔVDS + Rg Tested!


Applications

- Load Switch
- PWM Application
- Power Management


> Ordering Information

Device	Package	Shipping	
SSC8066GN4	PDFN3.3X3.3-8L	5000/Reel	

Pin configuration

PDFN3.3X3.3-8L (Bottom View)

Pin Configuration (Top View)

Marking

(YW: Internal Traceability Code)

➤ Absolute Maximum Ratings (T_A=25°C unless otherwise noted)

Symbol	Parameter	Ratings	Unit		
V_{DSS}	Drain-to-Source Volta	Drain-to-Source Voltage		V	
V_{GSS}	Gate-to-Source Volta	te-to-Source Voltage		V	
	Continuous Prois Current d	T _C =25℃	36	^	
l _D	Continuous Drain Current d	oltage $T_{C}=25^{\circ}C$ $T_{C}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ Tent b $T_{C}=100^{\circ}C$ $T_{A}=25^{\circ}C$ $T_{A}=70^{\circ}C$ $T_{A}=70^{\circ}$	19	A	
	Continuous Drain Current 3	T _A =25℃	12	^	
IDSM	Continuous Drain Current a	T _A =70°C	8.8	A	
I _{DM}	Pulsed Drain Curren	Pulsed Drain Current ^b			
D	B. B	Tc=25℃	27	10/	
P _D	Power Dissipation ^c	rain Current a $T_A=25^{\circ}\text{C}$ Ta=70 $^{\circ}\text{C}$ Pulsed Drain Current b sipation c $T_{c}=25^{\circ}\text{C}$ $T_{c}=100^{\circ}\text{C}$ sipation a $T_{c}=70^{\circ}\text{C}$	11	W	
D	Power Dissipation ^a	T _A =25°C	2.8	107	
P _{DSM}		T _A =70°C	1.8	W	
I _{AS}	Avalanche Current b L=0.5mH Single Pulse		16	А	
Eas	Avalanche Energy b L=0.5mH Single Pulse		64	mJ	
TJ	Operation junction temperature		-55~150	°C	
T _{STG}	Storage temperature ra	ange	-55~150	℃	

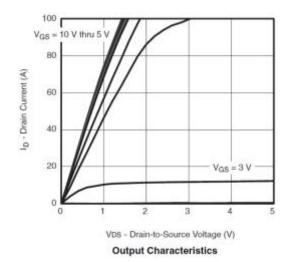
➤ Thermal Resistance Ratings (T_A=25°C unless otherwise noted)

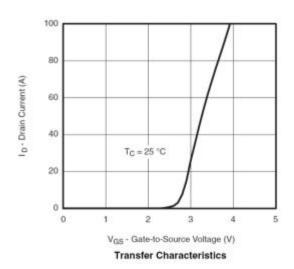
Symbol	Parameter	Ratings	Unit
$R_{\theta JA}$	Junction-to-Ambient Thermal Resistance a	35	°C AA/
R ₀ JC	Junction-to-Case Thermal Resistance	4.4	°C/W

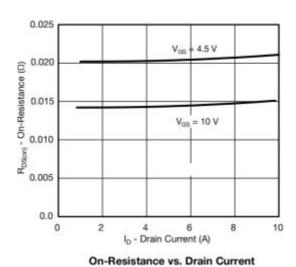
Note:

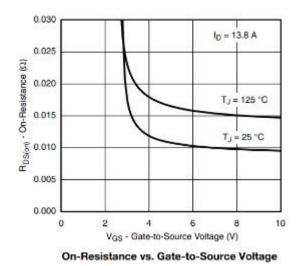
- a. The value of R_{θJA} is measured with the device mounted on 1 in² FR-4 board with 2oz.copper, in a still air environment with T_A=25°C. The value in any given application depends on the user is specific board design. The power dissipation is based on the t≤10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.
- d. The maximum current rating is package limited.

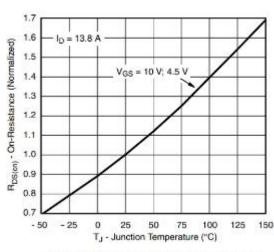
SSC-V1.0 www.sscsemi.com Analog Future

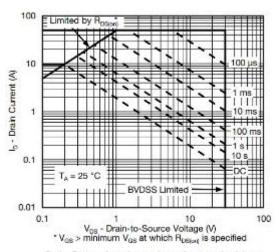


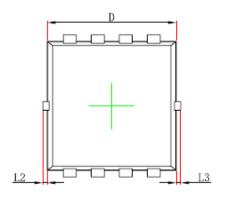

\succ Electrical Characteristics (T_A=25°C unless otherwise noted)

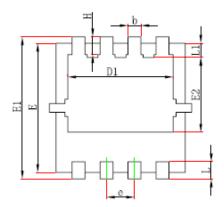

Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Drain-Source Breakdown Voltage	V _{(BR)DSS}	V _{GS} = 0V, I _D = 250µA	60			V
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250$ uA	1.4	1.9	2.5	٧
Drain-Source On-Resistance	D	V _{GS} = 10V, I _D = 9A		13	20	mΩ
Diain-Source On-Resistance	R _{DS(on)}	V _G S = 4.5V, I _D = 6A		19	29	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = 60V, V _{GS} = 0V			1	μA
Gate-Source Leak Current	Igss	V _G S = ±20V, V _D S = 0V			±100	nA
Transconductance	G _{FS}	$V_{DS} = 5V, I_{D} = 10A$		16		S
Forward Voltage	V _{SD}	V _G S = 0V, I _S = 9A			1.4	V
Gate Resistance	R _G	$V_{DS} = 0V, f = 1MHz$		1.4	2.2	Ω
Input Capacitance	C _{ISS}	\/ 45\/ \/ 0\/		1070		
Output Capacitance	Coss	$V_{DS} = 15V$, $V_{GS} = 0V$, $f = 1MHz$		108		pF
Reverse Transfer Capacitance	C _{RSS}	T = TIVITIZ		86		
Total Gate Charge	Q_{G}	V 40V V 20V		18		
Gate to Source Charge	Q _G s	$V_{GS} = 10V, V_{DS} = 30V,$ $I_{D} = 15A$		9		nC
Gate to Drain Charge	Q _{GD}	- ID = 13A		6		
Turn-on Delay Time	$T_{D(ON)}$			9		
Rise Time	Tr	$V_{GS} = 10V, V_{DS} = 10V, R_L$		4		
Turn-off Delay Time	T _{D(OFF)}	= 10Ω , $R_G = 1\Omega$,		15		ns
Fall Time	T _f			6		
Diode Recovery Time	Trr	I _F =20A, di/dt=500A/us		12		ns
Diode Recovery Charge	Q _{rr}	I _F =20A, di/dt=500A/us		19		nC



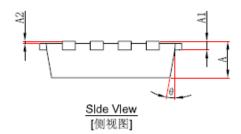

> Typical Performance Characteristics (T_A=25℃ unless otherwise noted)





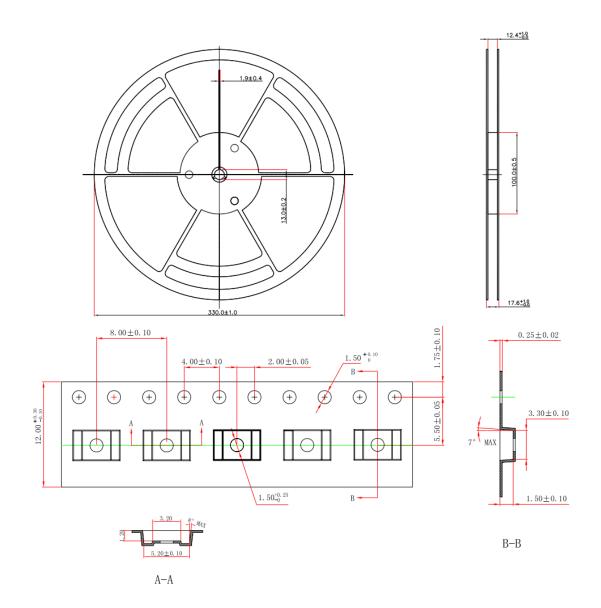

On-Resistance vs. Junction Temperature

Safe Operating Area, Junction-to-Ambient


Package Information

Top Vlew [顶视图]

Bottom View [背视图]



Package: PDNF3.3X3.3-8L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.650	0.850	0.026	0.033	
A1	0.152	REF.	0.006	0.006 REF.	
A2	0~0	.05	0~0	.002	
D	2.900	3.100	0.114	0.122	
D1	2.300	2.600	0.091	0.102	
E	2.900	3.100	0.114	0.122	
E1	3.150	3.450	0.124	0.136	
E2	1.535	1.935	0.060	0.076	
b	0.200	0.400	0.008	0.016	
е	0.550	0.750	0.022	0.030	
L	0.300	0.500	0.012	0.020	
L1	0.180	0.480	0.007	0.019	
L2	0~0.100		0~0	.004	
L3	0~0	0~0.100 0~0.0		.004	
Н	0.315	0.515	0.012	0.020	
θ	9°	13°	9°	13°	

> Tape and Reel

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.

OUR PRODUCT SPECIFICATIONS ARE ONLY VALID IF OBTAINED THROUGH THE COMPANY'S OFFICIAL WEBSITE, CRM SYSTEM, OR OUR SALES PERSONNEL CHANNELS. IF CHANGES OR SPECIAL VERSIONS ARE INVOLVED, THEY MUST BE STAMPED WITH A QUALITY SEAL AND MARKED WITH A SPECIAL VERSION NUMBER TO BE VALID.

SSC-V1.0 www.sscsemi.com Analog Future